
CS107 Handout 06
Spring 2008 April 4, 2008

Computer Memory: Bits and Bytes
This handout was written by Nick Parlante and Julie Zelenski.

To begin, we are going to take a glimpse into the inner workings of a computer. The
goal is that by seeing the basics of how the computer and compiler cooperate, you will
better understand how language features work.

Basic Architecture
Almost all modern computers today are designed using the Von Neumann architecture
of 1954. In the Von Neumann architecture, the computer is divided into a Central
Processing Unit, CPU, and memory. The CPU contains all the computational power of
the system while the memory stores the program code and data for the program. Von
Neumann's innovation was that memory could be used to store both the program
instructions and the program's data. The instructions that constitute a program are laid
out in consecutive words in memory, ready to be executed in order. The CPU runs in a
"fetch-execute" cycle where it retrieves and executes program instructions from
memory. The CPU executes the current instruction, and then fetches and executes the
next instruction, and so on. The sort of instructions the CPU executes are detailed later in
this handout.

Memory
The smallest unit of memory is the "bit". A bit can be in one of two states— on vs. off, or
alternately, 1 vs. 0. Technically any object that can have two distinct states can
remember one bit of information. This has been done with magnets, gear wheels, and
tinker toys, but almost all computers use little transistor circuits called "flip-flops" to store
bits. The flip-flop circuit has the property that it can be set to be in one of two states, and
will stay in that state and can be read until it is reset.

Most computers don't work with bits individually, but instead group eight bits together
to form a "byte". Each byte maintains one eight-bit pattern. A group of N bits can be
arranged in 2N different patterns. So a byte can hold 28 = 256 different patterns. The
memory system as a whole is organized as a large array of bytes. Every byte has its
own "address" which is like its index in the array. Strictly speaking, a program can
interpret a bit pattern any way it chooses. By far the most common interpretation is to
consider the bit pattern to represent a number written in base 2. In this case, the 256
patterns a byte can hold map to the numbers 0..255.

The CPU can retrieve or set the value of any byte in memory. The CPU identifies each
byte by its address. For this class, we will write memory operations like array
operations, so something like the notation Mem[20]=34 sets the value of memory at
address 20 to the value 34. The byte is sometimes defined as the “smallest addressable

2

unit” of memory. Most computers also support reading and writing larger units of
memory— 2 byte "half-words" (sometimes known as a “short” word) and 4 byte
"words". Half-words and words span consecutive bytes in memory. By convention the
address of any multiple-byte thing is the address of its lowest byte— its "base-address".
So the 4-byte word at address 400 is composed of bytes 400, 401, 402, and 403. Most
computers restrict half-word and word accesses to be "aligned"— a half-word must start
at an even address and a word must start at an address that is a multiple of 4.

Thankfully, most programming languages shield the programmer from the detail of
bytes and addresses. Instead, programming languages provide the abstractions of
variable and type for the programmer to manipulate. In the simplest scheme, a variable is
implemented in the computer as a collection of bytes of memory. The type of the
variable determines the number of bytes required. Here are the basic types and their
sizes:

Character— The ASCII code defines 128 characters and a mapping of those
characters onto the numbers 0..127. For example, the letter 'A' is assigned 65 in
the ASCII table. Expressed in binary, that's 26 + 20 (64 + 1), and so the byte that
represents 'A' is:

0 1 0 0 0 0 0 1

All standard ASCII characters have zero in the uppermost bit (the "most
significant" bit) since they only span the range 0..127. Some computers use an
extended character set which adds characters like é and ö using the previously
unused numbers in the range 128..255. Some systems use the 8th bit to store
parity information so a modem for example, can notice if a byte has been
corrupted. Some memory hardware systems keep a 9th parity bit for every
byte so the hardware can notice if memory is getting flaky— avoiding
troublesome HAL 9000 type problems.

Short Integer— 2 bytes or 16 bits. 16 bits provide 216 = 65536 patterns. This
number is known as “64k”, where 1 “k” of something is 210=1024. For non-
negative numbers these patterns map to the numbers 0..65535. For example,
consider the 2-bye short representing the value 65. It has the same binary bit
pattern as the 'A' above in the lowermost (or "least significant") byte and zeros
in the most significant byte. However, if a short occupies the 2 bytes at
addresses 450 and 451, is the most significant byte at the lower or higher
numbered address? Unfortunately, this is not standardized. Systems that are
big-endian (Motorola 68K, PowerPC, Sparc, most RISC chips) store the most-
significant byte at the lower address, so 65 as a short would look like this:

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

A little-endian (Intel x86, Pentium) system arranges the bytes in the opposite
order, so it would look like this:

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

3

This means when exchanging data through files or over a network between
different endian machines, there is often a substantial amount of "byte-
swapping" required to rearrange the data. Sigh, standards (or lack thereof).

To get negative numbers, there's a slightly different system which interprets
the patterns as the numbers -32768..32767, with one bit reserved for storing
sign information. The "sign bit" is usually the most significant bit of the most
significant byte.

Long Integer— 4 bytes or 32 bits. 32 bits provide 232 = 4294967296 patterns. Most
programmers just remember this numbers as “about 4 billion”. The signed
representation can deal with numbers in the approximate range ±2 billion. 4
bytes is the contemporary default size for an integer. Also known as a "word".
The representation of a long is just like that of a short. On a big-endian
machine, the four bytes are arranged in order of most significant to least and
vice versa for a little-endian machine.

Floating Point— 4, 8, 10, or 12 bytes. Almost all computers use the standard IEEE
representation for floating point numbers that is a system much more complex
than the scheme for integers. The important thing to note is that the bit pattern
for the floating point number 1.0 is not the same as the pattern for the integer
1. For example, 65 expressed as a floating point value has this bit pattern:

0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Interpreted as a big-endian long, this pattern would be 1079001088, which is not
at all the integer 65.

IEEE floats are in a form of scientific notation. A 4-byte float uses 23 bits for the
mantissa, 8 bits for the exponent, and 1 bit for the sign. It can represent values
as large as 3*1038 and as small 1*10-38 (both positive and negative). Clearly
there are many more floating point numbers in that range than the number of
distinct patterns that can be represented with a 4-byte float (which is ~4 billion)
so floats are necessarily approximate. A floating point value is usually only
accurate up to about 6 decimal digits of precision, and any digits after that are
suspect. 8-byte doubles range up to around 10308 and have 15 digits of reliable
precision.

Floating point operations have usually been considerably slower than the
corresponding integer operations. Some processors have a special hardware
Floating Point Unit, FPU, that substantially speeds up floating point operations.
With separate integer and floating point processing units, it is often possible
that an integer and a floating point computation can proceed in parallel to an
extent. This has clouded the old "integer is faster" rule greatly— on some
computers a mix of 2 integer and 2 floating point operations may be faster than
4 integer operations. Your mileage may vary. If you are really concerned about
optimizing a bit of code, then you'll need to run some tests. Most of the time
you should just write the code however you like best and let the compiler deal
with the optimization issues.

4

Records— The size of a record is equal to at least the sum of the sizes of its
component fields. The record is laid out by allocating the components
sequentially in a contiguous block, working from low memory to high.
Sometimes a compiler will add invisible “pad” fields in a record to comply with
processor alignment restrictions. For the purposes of this class, you can ignore
pad bytes unless explicitly mentioned in the problem.

Arrays— The size of an array is at least equal to the size of each element
multiplied by the number of components. The elements in the array are laid
out consecutively starting with the first element and working from low
memory to high. Given the base address of the array, the compiler can
generate constant-time code to figure the address of any element. As with
records, there may be pad bytes added to the size of each element to comply
with alignment restrictions.

Pointer— A pointer is an address. The size of the pointer depends on the range of
addresses on the machine. Currently almost all machines use 4 bytes to store
an address, creating a 4GB addressable range. There is actually very little
distinction between a pointer and a 4 byte unsigned integer. They both just
store integers— the difference is in whether the number is interpreted as a
number or as an address.

Instruction— Machine instructions themselves are also encoded using bit patterns,
most often using the same 4-byte native word size. The different bits in the
instruction encoding indicate things such as what type of instruction it is (load,
store, multiply, etc.) and the registers involved. We'll blow this concept off
until later.

