The make utility

As many of you probably already know, typing the entire command line to compile a program
turns out to be a somewhat complicated and tedious affair. What the make utility does is to allow
the programmer to write out a specification of all of the modules that go into creating an
application, and how these modules need to be assembled to create the program. The make
facility manages the execution of the necessary build commands (compiling, linking, loading
etc.). In doing so, it also recognizes that only those files which have been changed need be rebuilt.
Thus a properly constructed makefile can save a great deal of compilation time. Some people
are “afraid” of make and its corresponding makefile, but in actuality creating a makefile is
a pretty simple affair.

Running make

Invoking the make program is really simple, just type make at the shell prompt, or if you are an
EMACS aficionado M-x compile will do basically the same thing". Either of these commands
will cause make to look in the current directory for a file called ‘Makefile’ or ‘makefile’
for the build instructions. If there is a problem building one of the targets along the way the error
messages will appear on standard error or the EMACS ‘compilation’ buffer if you invoked
make from within EMACS.

Makefile-craft

A makefile consists of a series of make variable definitions and dependency rules. A variable
in amakefile is a name defined to represent some string of text. This works much like macro
replacement in the C compiler’s pre-processor. Variables are most often used to represent a list of
directories to search, options for the compiler, and names of programs to run. A variable is
“declared” when it is set to a value. For example, the line :

CC = g++

will create a variable named CC, and set its value to be gcc. The name of the variable is case

sensitive, and traditionally make variable names are in all capital letters.

While it is possible to define your own variables there are some that are considered ‘standard,’

and using them along with the default rules makes writing a makefile much easier. For the

purposes of this class the important variables are: CC, CFLAGS, and LDFLAGS.

cC The name of the C compiler, this will default to cc in most versions of

make. Please make sure that you set this to be gcc or g++ since cc is not
ANSI compliant on the LalR SparcStations.

CFLAGS A list of options to pass on to the C compiler for all of your source files.
This is commonly used to set the include path to include non-standard
directories or build debugging versions, the -I and -g compiler flags.
Sometimes this is called CPPFLAGS instead for C++ programs.

“ *‘M-x" means hold the ‘meta’ key down while hitting the ‘x’ key. If your keyboard does not have a ‘meta’ key then
the ‘ESC’ will do the same thing. Hit the ‘ESC’ key and then the ‘x’ key. Do not hold down the ‘ESC’ key or else

it will put you into eval mode.



7

LDFLAGS A list of options to pass on to the linker. This is most commonly used to set
the library search path to non-standard directories and to include
application specific library files, the -L and -1 compiler flags.

Referencing the value of a variable is done by having a § followed by the name of the variable
within parenthesis or curly braces. For example:

CFLAGS = -g -I/usr/class/csl193d/include

$(CC) $(CFLAGS) -c binky.c

The first line sets the value of the variable CFLAGS to turn on debugging information and add the
directory /usr/class/cs193d/include to the include file search path. The second line
uses the value of the variable CC as the name of the compiler to use passing to it the compiler
options set in the previous line. If you use a variable that has not been previously set in the
makefile, make will use the empty definition, an empty string.
The second major component of makefiles are dependency/build rules. A rule tells how to make a
target based on changes to a list of certain files. The ordering of the rules in the makefile does
not make any difference, except that the first rule is considered to be the default rule. The default
rule is the rule that will be invoked when make is called without arguments, the usual way. If,
however, you know eaxctly which rule you want to invoke you can name it directly with an
argument to make. For example, if my makefile had a rule for 'clean,' the command line 'make
clean' would invoke the actions listed after the clean label, more on actions later.
A rule generally consists of two lines, a dependency list and a command list. Here is an example:
binky.o : binky.c binky.h akbar.h
<tab>$(CC) $(CFLAGS) -c binky.c

The first line says that the object file binky.o must be rebuilt whenever any of binky.c,
binky.h, or akbar.h are changed. The target binky.o is said to depend on these three
files. Basically, an object file depends on its source file and any non-system files that it includes.
The second line™ lists the commands that must be taken in order to rebuild binky.o, invoking
the C compiler with whatever compiler options have been previously set. These lines must be
indented with a <tab> character, just using spaces will not work! Because of this, make sure
you are not in a mode which might substitute space characters for an actual tab. In particular, the
"Indented-text-mode" always "tabs" to the same indent level as the previous line, using spaces if
the previous line were indented less than the standard full 8 spaces. This is also a problem when
using copy/paste from some terminal programs. To check whether you have a tab character on
that line, move to the beginning of that line and try to move "right" (" £). If the cursor skips 8
spaces to the right, you have a tab. If it moves space by space, then you need to delete the spaces
and retype a tab character.

For “standard” compilations”, the second line can be omitted, and make will use the default build
rule for the source file based on its extension, .c for C files. The default build rule that make uses
for C files looks like this :

$(CC) $(CFLAGS) =-c <source-file>

“ The second line can actually be more than one line if multiple commands need to be done for a single target. In this
class, however, we will not be doing anything that requires multiple commands per target.
“ Most versions of make handle at least FORTRAN, C, and C++.



Here is a “complete” makefile for your reading pleasure.

CC = g++c
CFLAGS = -g -I/usr/class/csl193d/include
LDFLAGS = -L/usr/class/cs193d/1lib -lgraph

PROG = example

HDRS binky.h akbar.h defs.h
SRCS main.c binky.cc akbar.cc
OBJS = main.o binky.o akbar.o

$(PROG) : $(OBJECTS)
$(CC) -o $(PROG) $(LDFLAGS) $(OBJS)

clean :
rm -f core $(PROG) $(OBJS)

TAGS : $(SRCS) $(HDRS)
etags -t $(SRCS) $(HDRS)

main.o : binky.h akbar.h defs.h
binky.o : binky.h

akbar.o : akbar.h defs.h

This makefile includes two extra targets, in addition to building the executable: clean and
TAGS. These are commonly included in makefiles to make your life as a programmer a little bit
easier. The clean target is used to remove all of the object files and the executable so that you
can start the build process from scratch®, you will need to do this if you move to a system with a
different architecture from where your object libraries were originally compiled, since source
code is compiled differently on different types of machines. The TAGS rule creates a tag file that
most Unix editors can use to search for symbol definitions".

Compiling in Emacs

The Emacs editor provides support for the compile process. To compile your code from Emacs,
type M-x compile. You will be prompted for a compile command. If you have a makefile, just
type make and hit return. The makefile will be read and the appropriate commands executed.
The Emacs buffer will split at this point, and compile errors will be brought up in the newly
created buffer. In order to go to the line where a compile error occurred, place the cursor on the
line which contains the error message and hit Ac-Ac. This will jump the cursor to the line in your
code where the error occurred.

* It also removes any ‘core’ files that you might have lying around, not that there should be any.

' Use ‘M-x find-tag’ or ‘M-." in emacs to search for a symbol within emacs. Tags are a useful thing.



