Problem 2: Scheme

Scheme is a language whose primary built-in data structure is the linked list. Unlike any of
the lists you've dealt with in C, Scheme lists are fully heterogeneous — that is, the entries
needn’t all be the same type.

Some example lists are:

i. (2 35 7)

ii. (House at Pooh Corner)

iii. (Yankees 2 Diamondbacks 1)

iv. (4 calling birds 3 French hens 2 turtle doves 1 partridge)

These linked lists are so flexible, individual elements might themselves be lists. If that’s the
case, then lists can be nested to any depth.

V. ((1 2) (buckle my shoe))
vi. (one (2 (three 4)) 5 six)
vii. (how (nested (can (u (go)))) how (nested (can (u (go)))))

We can provide heterogeneous lists in C, but they don’t come easy. In order for them to
work, the individual elements of the list must carry their own type information. The idea is
to tag each list node with some enumerated type that tells us what the rest of the node
contains.

We'll just pretend that integers and strings are the only atomic types of interest. The third
list above (if bound to the stack variable gameThree) would be structured as follows:

str | Yankees\0

int 2

list

(@} o— str | Diamondbacks\0

list (@) O0— int 1

gameThree \/

list (@) 0—_

Y

list (@} o—

nil




str | one\0

list

@) nestedNumbers

The (one (2 (three 4)) 5 six) list (if bound to str | three\o
the stack variable nestedNumbers) would look like:
list @) 0— int 4
int 2 \\\/ i\
list .\
list O .\\/
nil
list ‘ .\\/ int 5
list O o—_ str | six\0
\/ A
list 0—.

Each node of a list clearly advertises what it stores, because
every node stores an identifier of type nodeType (see below) in the first few bytes.

What that identifier is dictates how big the node needs to be, and what resides there:

We'll officially allow only strings and integers; therefore, the following enumerated type

suits our needs:

typedef enum {
Integer, String,
} nodeType;

When handed a list, we need to pull the nodeType value from the first sizeof (nodeType)

List, Nil

bytes. From that, we know whether the rest of the node...

stores a null-terminated character array, as with:

stores nothing — the end of some list has been reached.

stores an int, as with:

stores two addresses, as with:

int 2

str | Yankees\0

list (@)

, or

nil

Note the characters of a string node are inside the node.

N

nil

nil




4

The concatall function takes a well-formed list and returns the ordered concatenation of all
of the list’s strings (including those in nested sublists.) Integers should just be skipped, and
shouldn’t contribute to the return value at all. Your implementation shouldn’t orphan any
memory.

*

/
Traverses a properly structured list, and returns the ordered
concatenation of all strings, including those in nested sublists.

When applied to the two lists drawn above, the following strings
would be returned:

ConcatAll (gameThree) would return "YankeesDiamondbacks"
ConcatAll (nestedNumbers) would return "onethreesix"

* % % o o o F F

~

typedef enum {
Integer, String, List, Nil
} nodeType;

char *ConcatAll (nodeType *list)
{



