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Example: Simple variables 
A variable is a location in memory. When a variable is declared, the stated type 
determines how many bytes in memory are reserved for that variable. The compiler 
creates a symbol table to map between the symbolic name of a variable (e.g. "i") and the 
location in memory where it will be stored (e.g. address 6210). We're not yet going to 
concern ourselves about exactly where in memory the compiler chooses to place 
variables.  There is no run-time type information available about variables, so when 
reading or assigning to a location it is not clear whether you are working with an int or 
a float or a pointer, etc. 
 

{ 
 int i; 
 
 i = 6; 
 i++; 
} 

 
In our code generation work, we will always assume ints are 4 bytes, so i has 4 bytes 
reserved for it, and let's say its address is currently stored in R1.  Generated code: 
 

M[R1] = 6  ; assign i the value 6 
 
R2 = M[R1]  ; load i's value into a register 
R2 = R2 + 1  ; do the addition 
M[R1] = R2  ; store new value into i  

 
The compilation translates one statement at a time.  There is not a one-to-one 
correspondence between C statements and machine instructions; usually several low-
level instructions are required to express the high-level statement.  You can also see why 
compiled code tends to not run as fast as hand-coded CPU instructions ("assembly 
language").  A smart optimizing pass of the compiler could shorten the whole sequence 
to just M[R1] = 7. 
 
When assigning or reading the value of variables that are less than full word size, the 
alternate form of load or store is used that indicates the number of bytes to move.  
 

{ 
 char ch; 
 
 ch = 'A'; 
} 

 
ch has just one byte reserved since it is a char. Assume its address is stored in R1.  
Generated code: 
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M[R1] =.1 65 ; 65 is ASCII value of 'A' 

 
 
Example: Type conversions 
The types char, short, int, and long are all in the same family, and use the same binary 
polynomial representation.  C allows you to freely assign between these types.  When 
assigning from a smaller-sized type to a larger, there is no problem.  All of the source 
bytes are copied and the remaining upper bytes in the destination are filled using what 
is called sign extension— the sign bit is extended across the extra bytes.  This makes it so 
the upper bytes are set to all zero for positive numbers, all ones for negative numbers, 
which exactly replicates the original number but just in a larger number of bytes. 
 

{ 
 char ch; 
 int i; 
 
 ch = 'A'; 
 i = ch;  // cast not needed, nor will it change result 
} 

 
Assume address of i is in R1, ch is at address R1 + 4.  (i.e. just after i, later we'll learn 
that this is usually the way local variables are laid out). Generated code: 
 

M[R1 + 4] =.1 65 ; assign ch ASCII value 'A' 
R2 =.1 M[R1 + 4] ; load ch into R2 (upper bytes of R2 are zeroed) 
M[R1] = R2   ; assign value in R2 to i 

 
Now i has the value 65 (which is the ASCII decimal representation for 'A'), the three 
upper bytes are zeros.  Assigning from a smaller to a larger data type never introduces 
any problems since any source value can be properly represented in the destination type.  
 
It is not so easy in the reverse direction: an integer can hold a value that is out of range 
for a short or char. An assignment like this will only copy the lower bytes and ignores 
the upper bytes. 
 

{ 
 char ch; 
 int i; 
 
 i = 1025; 
 ch = i; // a cast is not needed, nor will it change the result 
} 

 
Again, address of i is in R1, ch is at address R1 + 4. Generated code: 
 

M[R1] = 1025   ; assign i the value 1025 
R2 = M[R1]    ; load value of i into R2 
M[R1 + 4] =.1 R2  ; copy lower byte of R2 to ch 
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The value 1025 is larger than the maximum value (255) that can be represented in a one 
byte unsigned char. When storing the value, the upper bytes are ignored, only the lower 
byte (which has value 1) is copied when assigning to the character.  There’s no mention 
of an overflow or a loss of information.  (This is the kind of thing rocket explosions are 
made of...) 
 
Example: More type conversions 
As we discussed in lecture, the floating point types use a completely different 
representation scheme than the integer family of types.  C allows you to assign between 
these types but the compiler inserts a special instruction that converts between the 
representations since the bit patterns are different. 
 

{ 
 int i; 
 float f; 
 
 f = 3.14159 
 i = f; 
} 

 
Address of f in R1, i at R1 + 4. Generated code: 
 

M[R1] = 3.14159 ; assign f the value 3.14159 
 
R2 = M[R1]   ; load value of f into R2 
R3 = FtoI R2  ; convert value in R2 from float to int, store in R3 
M[R1 + 4] = R3  ; copy value in R3 to i 

 
In this case, FtoI is the instruction that takes a source register containing a float, converts 
to an integer and writes it to the destination register. There is also an ItoF instruction 
that converts in the other direction. Going from a float to an int truncates any fractional 
component.  Even if the floating point number had no fractional part, the FtoI 
instruction will still read the IEEE floating point (mantissa + exponent) format and 
rewrite the value in the binary polynomial format of an integer. A floating point 3.0 is 
represented with a totally different bit pattern than the integer 3. 
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Example: Control structures 
CPU instructions are laid out in memory in sequential order and unless otherwise 
indicated, processing goes word by word from low addresses to higher addresses with 
no skipping or jumping.  To implement a conditional code path for an if/then or loop, 
branch and jump instructions are used to change the sequence of instructions.  Here is 
some code that conditionally executes a statement based on a comparison result: 
 

{ 
 int i; 
 
 if (i >= 0)  
  i *= 2; 
 i = 10; 
} 

 
Assume an instruction is encoded in one machine word (4 bytes), so successive 
instructions are 4 bytes away in memory.  The branch and jump instructions refer to 
these addresses using a PC-relative scheme to route code through this passage. The 
address of i is in R1. Generated code: 
 

R2 = M[R1]  ; load value of i into R2 
BLT R2, 0, PC+12 ; if value < 0, skip to instr 12 bytes past current 
R3 = R2 * 2  ; multiply i by 2 
M[R1] = R3  ; store result back in i 
M[R1] = 10  ; assign i constant value 10 

 
When the value of i is not positive, the branch will jump over the instructions in the 
body of the "then" of the if statement, otherwise it will continue executing sequentially 
and meet up with the other path at a later instruction. 
 
Loops are also constructed from branch and jump instructions.  The bottom of the loop 
does an unconditional jump back up to the top of the loop.  At the top, a conditional 
branch is tested and exits from the loop when the termination condition is detected: 
 

{ 
 char ch; 
 int i; 
 
 for (i = 0; i < 10; i++) 
  ch = 'a';  // silly, just to have something in loop body 
 i = 25; 
} 

 
Address of i is in R1, ch is at address R1 + 4. Generated code: 
 

M[R1] = 0    ; initialize i to value 0 
R2 = M[R1]    ; load value of i into R2 (TOP of loop) 
BGE R2, 10, PC+20  ; if value >= 10, get out of loop 
M[R1 + 4] =.1 97 ; store 'a' in ch 
R2 = R2 + 1    ; add one to value of i 
M[R1] = R2    ; store result back in i 
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JMP PC-20    ; jump back to top of loop (BOTTOM of loop) 
M[R1] = 25    ; assign i constant value 25 

 
A similar while loop, such as the one below, would compile to the same sequence of 
instructions. 
 

{ 
 char ch; 
 int i; 
 
 i = 0; 
 while (i < 10) { 
  ch = 'a'; 
  i++; 
 } 
 i = 25; 
} 

 
In fact, when you only have the generated code, all you can observe is the looping 
pattern with some termination condition— it is not at all apparent whether it was a for 
loop, while loop, or even something nasty constructed with gotos! 
 
Example: Structures  
The layout for a struct is determined by its compile-time type declaration. The compiler 
uses the typedef to calculate the size of the entire structure, as well as identify the type, 
sizes, and offsets of the component fields. 
 

struct binky { 
 int a; 
 char b, c, d, e; 
 short f; 
}; 

 
Given the above definition, the structure would consist of 10 bytes laid out like this: 
 

  type size offset 

     
 f short 2 8 

 e char 1 7 

 d char 1 6 

 c char 1 5 

 b char  1 4 

     
     
     

base address --> a int 4 0 
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This code assigns a few of the fields in a struct binky: 
 

{ 
 struct binky x; 
 
 x.e = 'A'; 
 x.f = x.a; 
} 

 
Assumptions: there are 10 bytes allocated for the binky struct x, its base address is in 
R1.  
 
Generated code: 
 
M[R1 + 7] =.1 65  ; R1 is the base addr of x, add 7 for .e offset 
      ; '=.1' means move one byte instead of 4 
R2 = M[R1]   ; load value from .a which is at offset 0 
M[R1 + 8] =.2 R2  ; store .f at offset 8, =.2 to move 2 bytes 
      ; will truncate value to the lower 2 bytes 
 
Example: Arrays 
Arrays are laid out contiguously in memory and every element is the same size.  The 
compiler generates code to compute the address of any element by calculating that 
element's offset from the base of the whole array. 

0

1

3

2

4

5

6
index:

The location of the element at index i for 
0-based arrays is computed by counting 
up "i" elements from the base address:
array_base_addr + (i * elem_size)

array base address —>

offset

 
 

 
Consider a simple array of integers and an assignment to a particular entry (an index 
that is out of range, in fact. Does this produce any compile-time or run-time error?). 
 

{ 
 int arr[20]; 
 
 arr[25] = 7; 
} 

 
Assumptions: arr has 80 bytes allocated (20 * sizeof(int), the base address is in R1.  
 
 
Generated code: 
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R2 = 25 * 4   ; compute offset (smart compiler can optimize) 
R3 = R1 + R2    ; add to array base to get addr of 25th elem 
M[R3] = 7   ; store into that location 

 
Now consider this array of 50 binky structs and the C code to assign a field in one array 
element: 

{ 
 int i; 
 struct binky arr[50]; 
 
 a[i].f = i; 
} 

 
Assumptions: arr has 500  bytes allocated, its base address is in R1, i a 4-byte integer 
allocated at R1 + 500 (i.e. just after the end of arr). Generated code: 
 

R2 = M[R1 + 500]  ; load value of i 
R3 = R2 * 10     ; multiply by element size to get offset 
R3 = R1 + R3     ; add to array base addr to get addr of ith elem 
M[R3 + 8] =.2 R2   ; don't forget the constant +8 offset for ".f" 

 

Example: Pointers  
A pointer is essentially an unsigned long which holds a memory address.  Dereferencing 
a pointer means reading its value into a register and using it as the operand to a load 
instruction.  Some C code: 
 

{ 
 int *ptr; 
 
 *ptr = 120;    // dangerous run-time behavior, but it compiles... =) 
} 

 
Assumptions: ptr allocated 4 bytes, its address is in R1.  
Generated code: 
 

R2 = M[R1]  ; load value of ptr 
M[R2] = 120  ; dereference ptr and store 120 

 
 
The & operator is a compile-time operation which looks up the given variable in the 
compiler's symbol table, determines where the variable is being stored, and then uses 
that address in the calculation. A little C snippet: 
 

{ 
 int *s; i; 
 
 s = &i; 
 s++; 
} 
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Assumptions: i allocated 4 bytes, its address is in R1, s at R1  + 4.   
Generated code: 
 

M[R1 + 4] = R1  ; store addr of i in s 
R2 = M[R1 + 4]  ; load value of s into R2 
R2 = R2 + 4   ; increment value by 4 (ptr to int!) 
M[R1 + 4] = R2  ; store back into s 

 
Note that the last three instructions look exactly the same as they would for adding 4 to 
some integer variable.  When you look at the generated instruction stream, there is not 
nearly enough information to derive the original C source text.  In fact, many different 
snippets of C code can compile down to the same sequence of machine instructions. 
 
A pointer can also be used in pointer arithmetic expressions or with array bracket 
syntax.  In both cases, it is important to realize that offsets from a pointer are always 
assumed to be in units of the base type.  Adding 10 to a pointer or accessing the 10th 
element does not translate to adding exactly 10 bytes to the base address; it instead adds 
10 * sizeof(element). 
 

{ 
 int *arr 
 
 *(arr + 10) = 5; 
   arr[10] = 5;      // these two lines compile to exact same sequence 
} 

 
Assumptions: arr address is in R1.  Generated code (for one of the above statements, not 
both): 
 

R2 = M[R1]   ; load base address (value of pointer arr) 
R3 = 10 * 4    ; multiply offset by sizeof(int) 
R4 = R2 + R3  ; add offset to base 
M[R4] = 5   ; store at that location 

 
Combining structs and pointers, check out this code: 
 

{ 
 struct binky **y, *x; 
 
 x->f = 6; 
 (**y).f = 7; 
} 

 
Assumptions: x address is in R1, y at R1 + 4. Generated code: 
 

R2 = M[R1]   ; load x 
M[R2 + 8] =.2 6 ; dereference x and offset by 8 to get .f 
R2 = M[R1 + 4]  ; load y 
R2 = M[R2]   ; dereference y once 
M[R2 + 8] =.2 7 ; dereference again and offset by 8 to get .f 
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Example: Typecasts  
A typecast is a compile-time entity that instructs the compiler to treat an expression 
differently than its declared type when generating code for that expression.  For 
example, casting a pointer from one type to another could change the offset was 
multiplied for pointer arithmetic or how many bytes were copied on a pointer 
dereference.  The change in interpretation is only temporary and affects just the use with 
the cast. Consider this bit of C code: 
 
{ 
 int *ptr; 
 
 *(char *)ptr = 'a';  
} 
 
Assumptions: ptr address is in R1. Generated code: 
 

R2 = M[R1]   ; load value of ptr 
M[R2] =.1 97  ; deref ptr, copy just 1 char 

 
The cast tells the compiler to treat the address as a char *, so when we dereference and 
assign to it, only one char is copied.  If the value we were copying was larger than a char 
(say the value 1024), it would truncate and only copy the lower byte.  Even though there 
is actually an int at that address, when handling this expression, the compiler treats the 
address as if there is only a char there. 
 
Some typecasts are actually type conversions.  A type conversion is required when the 
data needs to be converted from one representation to another, such as when changing 
an integer to floating point representation or vice versa. 
 

{ 
 int total, count; 
 float average; 
  
 average = ((float) total)/((float) count); 
} 

 
Assumptions: average address is in R1. Generated code: 
 

R2 = M[R1 + 8]  ; load value of total 
R3 = ItoF R2  ; convert int to float 
R4 = M[R1 + 4]  ; load value of count 
R5 = ItoF R4  ; convert int to float 
R6 = R3/R5   ; divide (floating point version) 
M[R1] = R6   ; store in average 

 
 
Sometimes a typecast doesn't change the generated code, it just sedates the compiler 
about incompatible types, such as assigning mismatched pointers, or assigning a pointer 
to an integer.  Both pointers and integers are 4-byte integer-derived types and can be 
assigned to one another without any conversion, but the compiler (at least gcc) will 
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generate a warning unless you include a cast.  So with or without the cast, the same 
machine code results, it's just a matter of quieting the compiler. 
 

{ 
 char ch; 
 int *s; 
  
 s = (int *)&ch; 
 *s = (int)s; 
} 

 
Assumptions: s address is in R1. Generated code: 
 

R2 = R1 + 4   ; calculate address of ch 
M[R1] = R2   ; store in s (no conversion required) 
R3 = M[R1]   ; load value of s 
M[R3] = R3   ; deref and store val there 

 
Most often, a cast does affect the generated code, since the compiler will be treating the 
expression as a different type.  You can do a lot of very questionable things with 
typecasts.  
 
Behold the following: 

 
{ 
 int i; 
 
 ((struct binky *)i)->b = 'A'; 
} 

 
Assumptions: i address is in R1.  Generated code: 
 

R2 = M[R1]    ; load value of i 
M[R2 + 4] =.1 65  ; now treat like base address of struct! 

 

What does this code actually do at runtime?  Why would you ever want to do such a 
thing?  The typecast is one of the reasons C is a fundamentally unsafe language.  Even 
the best-laid walls of encapsulation cannot be strictly enforced with such a mechanism 
available.  A malicious client can break through any barrier with just a simple cast.  You 
can argue that this lack of restrictiveness contributes to C's expressiveness, and at times, 
it can be a valuable language feature, but it certainly comes with its downside. 
 
 


