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Assignment 5: Raw Memory 
Brought to you by Julie Zelenski and Jerry Cain. 

Bits and Bytes 
The first several weeks of CS107 are all about solidifying your understanding of 
memory: arrays, pointers, typecasts, parameter-passing, etc. and then supplementing it 
with a better understanding of compile-time language implementation: the layout and 
organization of memory, what kind of code is generated from a compiler, how the 
runtime memory structures (stack and heap) are managed, and so on.  The 
implementation problem set is a break from the hard-core C coding.  It’s your chance to 
try your hand at generating machine code, to do some in-depth experimentation with 
the compiler and the debugger in order to dissect your programs.  Recall that you’re not 
expected to hand anything in for this assignment.  You’re to work on the problems 
independently, compare your solutions to the answer key (to be provided on Friday), 
and ask questions where needed. 

 
To Be Completed By: May 7th at 7:00 p.m. 

 
How to compile a program without a Makefile 
You may want to write little test programs for the lab problems. You're used to relying 
on the provided Makefiles we wrote to build multi-module programs, but it is possible 
to just directly invoke the compiler at the shell.  Refer to the big UNIX handout for lots 
of details— here is just a brief summary: 
 
 To compile and link one file into an executable, you use: 

 
  % gcc binky.c -o binky 
 

  which says to compile the file binky.cc, link it, and name the resulting 
executable binky.  

 To compile multiple files into one executable, you first compile each file separately: 
 
  % gcc -c streamtokenizer.c -o stremtokenizer.o 
  % gcc -c wordgames.c -o wordgames.o 
 

  This compiles the file streamtokenizer.c into the output file 
streamtokenizer.o and stops without linking it. (same for wordgames.c). And 
then you invoke gcc again to link like this: 

  % gcc streamtokenizer.o wordgames.o -o word-games 
 

 that takes the two compiled object files and links them together into one 
executable called word-games. 

 You can also add other flags for compiling after the gcc such as -Wall (to generate all 
warnings), -g (to include debugging information, and -O (for optimization).  

Please note that some of the resources used in this assignment require 
a Stanford Network Account and therefore may not be accessible.
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Problem 1: Binary numbers and bit operations 
Since computers work entirely in binary, learning how to manipulate numbers in the 
base two system can sometimes come in handy.  Here are a few suggestions of some 
exercises to test out your understanding of binary numbers. 
 
 Try converting a few decimal numbers into binary form, do some binary arithmetic 

with them (add, subtract, maybe even a multiply), and convert the result back to 
decimal to verify you have it correct.  This lets you know you are on top of the basic 
workings and know how to do all that tedious carrying. 

 Write a test program to find out what happens when you overflow the range of a 
variable, such as adding two shorts that are both very large. Is any error reported on 
the overflow? How is the result related to what the desired answer would have been?  
What happens when you do the same thing with unsigned shorts instead of signed? 

 Write a program that assigns values between different-sized integer types. What 
happens when you go from a smaller-sized type to a larger? What about the other 
direction? How is the result related to the original number? Does this match your 
understanding of the binary representation? 

 
In addition to the usual logical AND, OR, and NOT connectives, there are bitwise 
versions of these operations available in C.  The bitwise AND (expressed with single &) 
compares its two operands bit-by-bit and reports which bits were 1 in both, 0 otherwise.  
For example: 
 

unsigned char a = 12, b = 5, c; 
c = a & b; 

 
Doing a bitwise AND on 00001100 (12 in binary) and 00000101 (5 in binary) gives the 
result 00000100, since the two patterns have only one bit in common.  
 
There is a bitwise OR operator (single |) that works similarly to logical OR, but operates 
at the bit level.  There is also a bitwise exclusive OR (^) that reports which bits are on in 
one operand, but not both.  The bitwise NOT (~) is a unary operator that just inverts all 
of the bits in its operand. Bit manipulations are used in a variety of situations (graphics, 
robotics, cryptography, etc.) especially when you need to work with a form of packed 
data. 
 
 How could you use bit operations to determine the remainder of a number when 

divided by 4 (or any power of two for that matter?)  How could use a bit approach to 
determine if an integer would lose data when assigned to a short or a char? 

 How can you use bit operations to convert a number from negative to positive or vice 
versa?  (Refer back to the “two’s complement” representation for negative numbers 
we showed in class and try to work through what the patterns are in terms of bits.) 

 One neat feature of the bitwise XOR operation is that it is completely invertible.  If 
you XOR a with b and then XOR the result with b again, you get back a (trace this out 
for yourself).  This makes this operation useful for encryption and decryption.  How 
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could you construct a simple program that encrypts a file using XOR and a specified 
“key”?  What would happen if you run the program twice in a row using the same 
key? 

 
Probelm 2: ASCII and extended ASCII 
In lecture, we showed the binary polynomial representation used for the integer-derived 
types. Characters belong to the integer family and although computers agree on the bit 
pattern used to represent the number 10 or 250, the mapping from number to character 
is where things break down. The ASCII character set establishes mappings for 0 to 127 
that are used by all computers, but the extended ASCII characters, from 128 to 255, 
varies from system to system.  
 
In /usr/class/cs107/assignments/assn-5-raw-memory, there is a file called ascii.txt 
that contains a table of all possible characters.  Try viewing this file on UNIX and then 
again on Macintosh or a PC (either by using ftp to transfer the file or viewing the file 
with a Web browser) and observe how the exact same bit pattern can be interpreted as 
different characters on different systems.  Which number-to-character mappings seem to 
be reliable? Which are not? 
 
What implications does this have for using extended ASCII characters in a Web page 
intended to be viewed by all?  What about sending those characters in e-mail exchanged 
between different computers?  Does this exercise help explain any weird character 
translation problems you may have run into in the past? 
 

 
Problem 3: It's just bits and bytes 
One key idea we've been stressing is that memory is just one big glob of bytes.  You can't 
tell whether the byte at address 0x1024 is a character or the first or third byte in an 
integer, whether it's initialized, whether it's in use, or anything meaningful at all from 
the bits stored there.  Many bit patterns will have reasonable values in several 
interpretations.  The x command in gdb will allow you to examine memory in all variety 
of interpretations (try "help x" in gdb for details on how to use it), so you can try "What 
if the contents of 0x1024 were a float, what would its value be? What if it were a 
machine instruction?" and so on.  Try these few experiments and report your findings: 
  

 Put the string "hi!" somewhere in memory and use gdb's x command to see how 
those 4 characters would be interpreted if treated as an integer. What about as a 
machine instruction? 

 Use x to learn what the integer bit pattern 3 would be re-interpreted if treated like a 
float. Does the result turn out to be 3.0? 

 
This type of x operation is also available at runtime using a typecast.  For safety reasons, 
most languages don't expose the typecast mechanism to the programmer and therefore 
constrain type conversion to a limited set of operations that actually make sense.  C, on 
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the other hand, allows the typecast to be freely used in (almost) all situations, allowing 
the programmer immense control over interpretation of data, but also providing 
opportunity for lots of errors.  You can do a lot of very twisted and weird things with 
typecasts, most of which you probably shouldn't even want to do. To show off your new 
prowess as a master of data manipulation, here are a few pressing needs you can solve.  
Try to construct a code snippet using a typecast that will: 
 

 Print out the contents of a 4-byte struct as though it were a 4-byte float. 
 Directly copy the first four characters of a string and assign them into an integer 

variable. 
 Report whether the architecture is big or little endian.  Recall big-endian means the 

most significant byte of a multi-byte value is at the lowest address, vice versa for 
little-endian. 

 
Problem 4: Identical Outputs 
As we’ve stressed in lecture, type information is used at compile-time to make decisions 
about how many bytes of data to load/store and calculating offsets and the like, but all 
that is left at runtime is a sequence of instructions and data laid out in memory for it to 
operate on.  Looking at the generated code tells you little about what a given 4 bytes is: 
an int? a struct fraction *? a sequence of 4 characters? It is possible for many different 
C functions to compile to the same output— the exact same sequence of CPU 
instructions is appropriate if the functions access the same memory locations in the same 
pattern.  For example, look at this set of machine instructions: 
 

R2 = Mem[SP] 
R3 = R2 + 4 
R4 = Mem[SP + 4] 
Mem[R4] = R3 

 
a) Assuming that SP holds the address of the last local variable (and others follow at 

higher addresses), build a C snippet with variables of only pointer type (any type of 
pointer okay) that will compile to the above sequence of machine instructions. The 
code should not have any typecasts. 

b) Construct another function with just one local variable involving only integer type 
(array or structs of integers also okay) that compiles to the same sequence of 
machine instructions. You can use typecasts if necessary. 
 

 



  5  

Problem 5: Find the linked list 
You are debugging a program.  You suspect that the program has allocated a linked list 
containing the sequence of numbers (1,2,3), but you’re not sure.  If the list is present, the 
three elements will use the following type definition and will be allocated and set up in 
the normal way with calls to operator new (which in turn calls malloc). 

 1 2 3  
 
struct list { 
  int data; 
  struct list *next; 
}; 

 
Write a function that looks through the heap to see if a (1,2,3) list is present anywhere. 
Assume that the function takes no inputs but returns true if the list is present and false 
otherwise.  You can assume that kHeapStart (a void *) and kHeapSize (an int) are global 
constants defined for you.  Your function should not dereference any invalid pointers.  
Do not worry about alignment restrictions or rounding up allocations to some larger 
value. 
 
Problem 6: Homestar Runner: The System Is Down 
You are to generate code for the following nonsense code. Don't be concerned about 
optimizing your instructions or conserving registers. We don't ask that you draw the 
activation records, but it can only help you get the correct answer if you do. Be clear 
about what assembly code corresponds to each line of code. 
 
a) Consider the following record definition: 

 
typedef struct { 
 int coachz; 
 short *thecheat[2]; 
 homestarrunner **strongbad; 
} homestarrunner; 
 
void pompom(homestarrunner strongmad, homestarrunner *marzipan) 
{ 
 char bubs[4]; 
 bubs[*bubs] = *(marzipan->thecheat[strongmad.coachz]); 
 ((homestarrunner *)(strongmad.thecheat))->strongbad += *(int *)bubs; 
} 
 
Generate code for the entire pompom function. 
 

b) Now generate code for the puppetthing function.  You needn’t draw the stack  
frame out, but it can only help. 
 
homestarrunner **puppetthing(homestarrunner *marshie,  
           homestarrunner& mrshmallow) 
{ 
 return (**puppetthing(&mrshmallow, *marshie)).strongbad; 
} 

line 1  
line 2 
line 3 
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Problem 7: The Hitchhiker’s Guide To The Galaxy 
Consider the following type and function definition: 

 
typedef struct { 
 short **arthur; 
  char ford[12]; 
  int trillian; 
  short zaphod[6]; 
} galaxy; 
 
static galaxy *hitchhikersguide(galaxy *mice, short **dolphins); 
static short *thanksforallthefish(galaxy marvin, int *deepthought) 
{ 
   marvin.zaphod[100] = deepthought[*marvin.ford]; 
   ((galaxy *)((galaxy *)(marvin.zaphod))->ford)->trillian = **marvin.arthur; 
   return hitchhikersguide(&marvin + 1, marvin.arthur)->arthur[10]; 
} 

 
Generate code for the entire thanksforallthefish function. 
 
Problem 8: C++’s Dark Side 
Given the following  C++ class definition, generate code for jedimaster::luke method.  
Assume that the parameters have already been set up for you, and don’t worry about 
returning from the method.  Be clear about which code pertains to which line.  Recall 
that C++ references are automatically dereferenced pointers, and k-argument methods 
are really (k + 1)-argument functions, because the address of the receiving object is 
quietly passed in as the bottommost parameter.  The address of the first instruction of 
the anakin method is synonymous with <jedimaster::anakin>. 
 

class jedimaster { 
 
 public: 
    int luke(jedimaster *macewindu, jedimaster obiwan); 
    int& anakin(short *padme, jedimaster& leia); 
 
  private: 
    short council[4]; 
    short *yoda; 
}; 
 
int jedimaster::luke(jedimaster *macewindu, jedimaster obiwan) 
{ 
 obiwan.yoda += macewindu->council[40]; 
 return obiwan.anakin((short *) &obiwan, *this); 
} 

 
 
 

line 1  
line 2 
line 3 

line 1 
line 2 


